

Approved for public release; further dissemination unlimited

Preprint
UCRL-JC-145800

Dynamic Statistical
Profiling of Communication
Activity in Distributed
Applications

Jeffrey S. Vetter

This article was submitted to
Association of Computing Machinery SIGMETRICS 2000
International Conference on Measurement and Modeling of Computer
Systems; Marina Del Rey, California; June 15-19, 2002

October 12, 2001

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and shall
not be used for advertising or product endorsement purposes.

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be
made before publication, this preprint is made available with the understanding that it will not be cited or
reproduced without the permission of the author.

This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from the

Office of Scientific and Technical Information
P.O. Box 62, Oak Ridge, TN 37831

Prices available from (423) 576-8401
http://apollo.osti.gov/bridge/

Available to the public from the

National Technical Information Service
U.S. Department of Commerce

5285 Port Royal Rd.,
Springfield, VA 22161
http://www.ntis.gov/

OR

Lawrence Livermore National Laboratory

Technical Information Department’s Digital Library
http://www.llnl.gov/tid/Library.html

SUBMITTED TO SIGMETRICS 2002

 2 November 2001, 17:23

Dynamic Statistical Profiling of Communication
Activity in Distributed Applications

Jeffrey S. Vetter

Center for Applied Scientific Computing
Lawrence Livermore National Laboratory

vetter3@llnl.gov
A complete trace of communication activity for a terascale application is overwhelming in terms of overhead and storage. We
propose a novel alternative that enables profiling of the application’s communication activity using statistical message sampling
during runtime. We have implemented an operational prototype and our evidence shows that this new technique can provide an
accurate, low-overhead, tractable alternative for performance analysis of communication activity. Moreover, this alternative
enables an assortment of runtime analysis techniques not previously available with post-mortem, trace-based systems. Our
assessment of relative performance and coverage of different sampling and analysis methods shows that purely random selection
is preferred over counter- and timer-based sampling. Experiments on several applications running up to 128 processors
demonstrate the viability of this approach. In particular, on one application, statistical profiling results contradict conclusions
based on evidence from tracing. The design of our prototype reveals that parsimonious modifications to the MPI runtime system
could facilitate such techniques on production computing systems, and it suggests that this sampling technique could execute
continuously for long-running applications.

1 Introduction
To fully realize the potential of terascale computing, users must be able to understand the

performance of their applications. Unfortunately, the scale of new systems, which will have thousands, if

not millions, of processors [1], is quickly outstripping the capabilities of traditional performance analysis

techniques. While traditional trace-based techniques for analyzing communication performance of

distributed applications have demonstrated advantages [6, 10, 11, 14, 15, 17, 18, 21] , their operation on

terascale platforms presents several challenges. In particular, these techniques require post-mortem

analysis of potentially massive tracefiles, which, in turn, can lead to high instrumentation overhead and

perturb performance observations.

Put simply, this paper proposes a novel alternative that addresses these challenges by enabling

statistical profiling for individual messages of an application’s communication activity during execution.

Similar to other statistical profiling techniques [2, 3, 7], our technique strikes a balance between the

comprehensive detail of tracing and the insight necessary for optimization. Evidence from an operational

prototype, built on the Message Passing Interface (MPI), shows that this new technique can provide an

accurate, low-overhead, tractable alternative for performance analysis. Messages can be sampled and

analyzed with a variety of techniques that are easily interchanged at the MPI profiling layer. Also, this

alternative enables an assortment of runtime analysis techniques not previously available with post-

SUBMITTED TO SIGMETRICS 2002

 - 2 -

mortem techniques, allowing the prototype to jettison raw performance data as soon as the runtime

analysis is complete.

1.1 Motivating Example

To motivate the demands of performance analysis with large-scale applications, we consider a case

study of SMG2000, a MPI application that has demonstrated scalability to four thousand processors.

(Section 4 provides complete details of the experimental evaluation.) The goal of this example is to

outline the process of traditional performance analysis, highlight its limitations, and argue for statistical

profiling of communication activity via message sampling.

Trace-based performance analysis of

distributed applications is very useful because it

provides users with detailed chronology of their

application’s execution [6, 11, 14, 15, 17, 18, 21].

The typical operation of a trace-based tool for

analyzing communication operations on a

distributed application is a multi-step process as

illustrated in Figure 1. Assume that the user has

instrumented their application with software

instrumentation that captures pertinent

performance data (achieved by the MPI Profiling

Layer in Figure 1). As the instrumented application executes on a distributed platform, the

instrumentation captures significant information (steps � and �) as an event record that includes a

timestamp, subroutine parameters, and message size. Although each task stores its performance data

locally on each CPU to limit perturbation to the network, the application does incur some level of

mandatory overhead from this software instrumentation. At application termination, the tool merges the

distributed files into one file, reconciling point-to-point communication operations and matching

collective operations (step �). Clearly, certain types of performance analysis cannot occur until this phase

because metrics, such as message latency are not available until reconciliation of the event records for

Post-Mortem

MPI RuntimeMPI Runtime

MPI Profiling LayerMPI Profiling Layer

User ApplicationUser Application

Task 0

MPI RuntimeMPI Runtime

MPI Profiling LayerMPI Profiling Layer

User ApplicationUser Application

Task 1

�

�

�

� �
�

AnalysisAnalysis

MPI_Send

PMPI_Send PMPI_Recv

MPI_Recv

�

Message

Local
tracefile

Local
tracefile

Global TracefileGlobal Tracefile

�

�

Figure 1: Traditional Performance Analysis of
Communication Activity.

SUBMITTED TO SIGMETRICS 2002

 - 3 -

point-to-point messages. Lastly, with the merged file in hand, a user can proceed with the investigation

with a variety of techniques (step �) including statistical analysis, pattern recognition, automated

classifiers, and visualization to glean important insights

into their application performance. Practically all of the

popular tools in this area rely on visualization to assist users

in analysis of performance data [11, 20].

1.2 Observations

To make this process more concrete, we apply a widely

used MPI tracing tool to SMG2000 on 48 tasks. This application sets up and solves a linear system, a task

common to scientific computing. Our tracing tool interposes instrumentation between the application and

the MPI runtime using the MPI profiling layer. This instrumentation intercepts significant MPI

subroutines, captures a timestamp and relevant subroutine parameters, records the event to a memory

buffer, and eventually, writes them to a local disk file. Most of this instrumentation has been optimized to

use efficient buffering techniques, low overhead timers, and minimal data collection. This tool

automatically merges the data into one file at application termination, during which it sorts the events by

global time, reconciles point-to-point message operations, and calculates communication statistics.

SMG2000 has an astonishing number of communication operations: it sends approximately 16,000

messages per task per solve. This volume of message traffic can create very large local and global

tracefiles. For example, the final, merged tracefile for SMG2000 on 48 tasks is 225MB. More problematic

is the execution time of SMG2000’s solution phase increases from 26 seconds to 66 seconds.

Consequently, it increases overhead due to the cumulative effect of the software instrumentation and the

fact that the buffers must be flushed to disk frequently. Even when a user exercises considerable care in

focusing the instrumentation on particular subroutines or on limited phases of execution, this situation can

perturb the underlying application so much that it does not resemble an actual execution of the optimized

application, especially when tracing a sequence of messaging operations. For instance, Figure 1 illustrates

a sequence of communication operations that instrumentation perturbation can influence. Once cause of

performance problems in MPI applications is handling unexpected messages. Typically, users try to

Task 1

�

�

�

MPI_Recv(from=0)
/* instrumentation d */

/* computation */

MPI_Send(to=1)
/* instrumentation f */

Task 0

MPI_Send(to=1)
/* instrumentation a */
…

MPI_*
/* instrumentation b */
…

MPI_Recv(from=1)
/* instrumentation c */

Figure 2: Perturbation example.

SUBMITTED TO SIGMETRICS 2002

 - 4 -

optimize their applications by posting receives before their matching sends as for messages � and �.

Tracing tools would certainly provide insight into this phenomenon; however, the intervening

instrumentation may very well change a properly posted message into an unexpected message. In this

example, the cumulative instrumentation of a and b could very well delay the MPI_Recv and make

message � appear as an unexpected message, when in reality, without instrumentation, it is not.

Statistical profiling of messages helps to alleviate this issue in two ways. First, it reduces the

instrumentation overhead because fewer messages are measured. Second, statistical profiling randomly

distributes the instrumentation overhead across the entire message population, helping to avoid situations

like the one proposed in Figure 2.

2 Enabling Runtime Analysis of Communication Activity
As identified in Section 1.2, one major limitation of current techniques is that most analysis must be

deferred until the distributed tracefiles can be merged and reconciled. In contrast to these trace-based

techniques, we propose a new alternative that enables runtime analysis of communication activity by

appending a tiny amount of performance information to all messages exchanged by the application. Our

prototype shows that these parsimonious modifications enable runtime analysis and statistical sampling of

messages, both of which are important elements in eliminating the burdens incumbent on trace-based

techniques: data management and overhead.

PHOTON, our operational prototype for statistical sampling of application communication activity,

focuses on the Message Passing Interface (MPI) [8, 19]. Historically, users have written scientific

applications for large distributed memory computers using explicit communication as the programming

model. This trend crystallized with the creation of the Message Passing Interface (MPI) specification [8,

19], which simplified numerous issues for both application developers and system designers. As a result,

application developers stabilized on the MPI programming model and this has facilitated the ongoing

development of a considerable number of applications based on MPI. MPI provides a wide variety of

communication operations including point-to-point operations, both blocking and non-blocking, and

collective operations such as broadcast and global reductions. We concentrate on basic point-to-point

SUBMITTED TO SIGMETRICS 2002

 - 5 -

operations: blocking send, blocking receive, non-blocking send, and non-blocking receive, because they

are widely used and the most important yet difficult components to sample.

2.1 Components

PHOTON’s design has two basic components: a MPI profiling library and a modified MPI runtime

library. A user application must use both components to benefit from PHOTON features. This design

minimizes modifications to the underlying MPI runtime, while retaining considerable flexibility for

selecting sampling and analysis techniques in the MPI profiling layer. Most MPI performance analysis

techniques use only the MPI profiling layer to gather performance information.

As Figure 3 illustrates, the first

component of PHOTON is the modified

MPI runtime library. Our

implementation is a fully functional

version of MPICH 1.2.2, configured to

use IBM’s Message Passing Library

(MPL). Our modifications are minimal.

We change the definition of point-to-

point message headers to include two new fields: a timestamp and a source code location identifier. We

also modified the send and receive operations for all message protocols. For send operations, the profiling

layer sets two task variables. When set, the modified send operations copy these two variables into the

header of the outgoing message. For receive operations, the internal library copies these two variables

into a modified MPI_Status variable. This new definition of MPI_Status includes our two new fields, since

each incoming message must set a status word1. If the incoming message is tagged, then the receive

operation copies the timestamp and source code location into these two status fields. Otherwise, it ignores

them. The profiling layer can then easily check these two new fields in the MPI_Status structure to

determine if, indeed, the send operation tagged the current message. If it did, then the receive operation,

can extract these two additional fields from the MPI_Status structure, and use them for analysis.

MPI RuntimeMPI Runtime

MPI Profiling LayerMPI Profiling Layer

User ApplicationUser Application

Task 0

MPI RuntimeMPI Runtime

MPI Profiling LayerMPI Profiling Layer

User ApplicationUser Application

Task 1

�

�

�

� �

�

AnalysisAnalysis

MPI_Send

PMPI_Send PMPI_Recv

MPI_Recv

�

Sample?Sample?

Tagged
Message

Figure 3: PHOTON Design Overview.

SUBMITTED TO SIGMETRICS 2002

 - 6 -

Strictly speaking, our limited changes to the MPI runtime system are 1) increased message header

size by 12 bytes, 2) two writes to these fields in the send operation, 3) two reads of these files in the

receive operation, 4) one control branch each in the send and the receive operation, and 4) an increased

size of the MPI_Status structure. As our experimental result show in the next section, this overhead is

imperceptible in the performance of our MPI implementation. Notice that these changes do not include

procedure calls, data analysis, or sampling logic. The optional performance analysis tool in the MPI

profiling layer provides all of these components, if desired.

The second component of our strategy exploits this additional information by using the MPI profiling

layer to allow analysis on unmodified application codes. This relinking via the profiling layer interposes

PHOTON between the application and the MPI runtime system, where PHOTON can intercept all MPI calls

and record sufficient information about these operations to make reasonable judgments about the

application performance.

2.2 Operation
Given these two components, PHOTON works as illustrated in Figure 3. A message is sent from Task

0 to Task 1 using MPI’s blocking communication routines. In �, the application prepares the message

and calls the MPI_Send routine. The MPI_Send routine is intercepted by the MPI profiling layer. At this

point �, PHOTON uses some technique to decide whether to sample this particular message. Assume that

it decides to sample the current message. PHOTON then records the start timestamp of the send operation

and an identifier describing this operation’s location in the source code. Usually, this location is the return

address of this MPI call; however, it can be a more elaborate hash function that encodes a stack traceback,

message parameters, etc. PHOTON passes these two additional pieces of information to the MPI runtime

and calls the name-shifted profiling layer routine, PMPI_Send. As the MPI runtime begins at step �, it

loads this additional information into the message header of the message envelope that it prepares. It then

dispatches this message to the underlying message libraries. This operation is similar for all MPI

protocols. As the tagged message flows across the network at step �, it carries these two additional

pieces of information with it in its message header.

1 The MPI specification allows users to set MPI_STATUS_IGNORE to bypass the setup of the MPI_Status structure.

SUBMITTED TO SIGMETRICS 2002

 - 7 -

Meanwhile, Task 1 has issued a blocking MPI_Recv for this message, not knowing if the incoming

message is a tagged message or not. As the user application calls MPI_Recv at step �, it must post the

blocking PMPI_Recv at step � without knowledge of the sampling decision. Only when the message is

received can Task 1 actually make a decision about how to handle this message. It is important to note

that this problem is impossible to solve for all MPI protocols within the MPI profiling layer alone, and it

necessitated our modifications to the MPI runtime.

Now, Task 1 receives the message at step � and it recognizes that this message has been tagged, so

the MPI runtime copies this information directly into the two additional fields in our modified MPI_Status

structure. When the MPI runtime completes the receive of this tagged message, it returns from the

PMPI_Recv into the PHOTON profiling layer. At this point, PHOTON can make any number of decisions

about how to analyze the tagged message. At �, PHOTON can record statistics and discard the data, write

it to a trace file, or simply ignore it. When PHOTON has completed its analysis at step �, it returns to the

user application via the MPI_Recv call. The user application can then process the message as it normally

would and without regard to the fact that the message was sampled by the underlying performance

analysis system.

2.3 Key Design Implications
This design alternative has a number of important implications. First, message processing is

undisturbed. Our technique does not require additional messages, additional copying of message buffers,

or excessive quantities of extra buffer space. Therefore, the MPI behaviors of this alternative should

closely resemble the behaviors of the original MPI application. Although we considered several options to

modifying the underlying MPI implementation, none of these strategies provided necessary functionality

for all MPI operations and respected all of the requirements demanded by the MPI specification, such as

its message-ordering requirement.

More specifically, three alternatives come to mind. In the first alternative, one could simply send an

extra message following each sampled message. This alternative has two issues: it introduces additional

messages into the system, and the receiving task has no a priori knowledge of when to wait for a sampled

PHOTON creates a temporary MPI_Status structure and passes this structure to the underlying system.

SUBMITTED TO SIGMETRICS 2002

 - 8 -

message. This strategy could also introduce race conditions into the application. In the second alternative,

the system could exchange performance data during collective operations; however, the overhead could

be noticeable and reconciling sends with receives would still demand comprehensive knowledge of all

operations. The final alternative is that the technique could use MPI derived types to piggyback additional

data onto messages. On the face of it, this alternative is appealing. The MPI specification allows nested

data types, allowing a send operation to simply repackage a message and forward it to the receiver where

it is unpackaged with the additional performance data. Unfortunately, this alternative has several

problems. First, MPI derived types can perform poorly because of additional memory copying and

buffering of data, which might drastically alter the performance characteristics of the application [9].

Second, the receiver cannot determine which messages are tagged messages. MPI message envelopes

specify message source, tag, and communicator, but not data type. This limited information prohibits the

receiver from determining whether an incoming message is tagged. Therefore, the receive operation has

no idea of how to prepare the receive buffer. This strategy is also plagued by the possibility of several

types of race conditions.

The second important implication is that decisions regarding sampling and analysis techniques remain

at the MPI profiling layer. Thus, these decisions can be easily interchanged without altering the

underlying MPI runtime. Better still, by relegating all of these decisions to the profiling layer, the

performance of the modified MPI runtime can remain practically unchanged from the original.

The third and final implication is that this design is applicable to all types of point-to-point

communication regardless of MPI subroutine or message protocol. Take, for example, non-blocking

communication. PHOTON simply loads the message header during the initiation of the non-blocking

MPI_Isend. The underlying message library transfers the message normally. As the message is received

with a MPI_Irecv/MPI_Wait pair, the extra performance information from the message header is transferred

directly into the MPI_Status structure, which is provided to MPI_Wait as a parameter. This line of reasoning

holds true for other completion operations including MPI_Test and MPI_Waitsome too because they return a

MPI_Status structures for completions.

SUBMITTED TO SIGMETRICS 2002

 - 9 -

3 Statistical Message Sampling
Although sampling is popular in many other areas of performance analysis, such as procedure

profiling [3, 7] and instruction analysis using hardware counters [2], it has not been applied to

communication activity due to the limitations listed in Section 1.2. With the novel alternative proposed in

Section 2, we can now reliably and accurately access performance information at runtime, so that

communication performance analysis could benefit equally from statistical sampling. To our knowledge,

this technique is novel and it represents a significant shift in current technology for performance analysis

of terascale, distributed applications. Sampling has also been applied at low levels of communication

activity [5], but this research focused on understanding wide-area networks, rather than on optimizing the

applications that use those networks.

3.1 Sampling Strategies
As Figure 3 illustrates, in step 2, PHOTON can use most any technique to determine how to sample

messages from the entire message population of the application. Naturally, three different techniques can

drive our sampling approach: purely random sampling, counter-based sampling, and timer-based

sampling.

Random sampling: Our first sampling method is purely random sampling. On every send operation,

PHOTON draws a number from a uniform distribution in (0,1] and then checks that number against a user

defined threshold (T) to determine if the current message should be sampled. This strategy is simple and it

allows a user to easily control the number of samples by changing the threshold, and the instrumentation

impact on the application.

Counter-based sampling: In PHOTON, a single counter in each task is incremented for every send

operation. When the counter exceeds a threshold, one message is sampled, the counter is reset, and a new

target threshold is calculated. The user can select the period (P) and variance (V) of the counter. Counter-

based sampling benefits from its simplicity and low overhead; however, estimating the appropriate

settings for P and V can be difficult because it depends entirely on the frequency of application

communication.

SUBMITTED TO SIGMETRICS 2002

 - 10 -

Timer-based sampling: Similarly, for timer-based sampling, a message is sampled after a period of

time has expired since the last send operation. The user specifies a period of time (P) and a variance (V).

Note that our technique does not use expensive interrupts to execute this sampling technique. Rather, as

the application calls MPI send routines, PHOTON polls the local time and then decides if the specified

threshold has been met. Although the cost of sampling the timer can be expensive relative to using

counters, timer parameters are much easier to estimate and PHOTON must capture this timestamp for the

outgoing message.

These methods sample from the entire message population; however, they can also be adapted to

sample subsets of the population. For instance, we could sample only large messages, only messages sent

from a certain callsite, or only messages during a certain phase of the application execution.

3.2 Analysis Methods

Now that a considerable amount of performance information is available at runtime, PHOTON can

elect to perform analysis at runtime and jettison the raw performance data. In the context of terascale

computing, this capability is vital because it eliminates the need for capturing massive tracefiles and

harvesting important performance data from those files. Certain performance problems may still require

tracing; however, this runtime analysis can quickly direct further efforts on a subset of operations.

For performance analysis, our experience indicates that it is important that users are able to map

performance data back to source code; we record and categorize all messages by source task, destination

task, callsite location in source and destination, and message size. We capture message latency as our

primary performance metric, where we define latency as the time from the start of the send operation until

the end of the matching receive operation. Although this definition is somewhat different than

architectural definitions, this interpretation is easy for a user to reason about, and it maps directly to the

user’s source code. Most trace-based tools use similar definitions.

We introduce two lightweight techniques to analyze this data at runtime and we include a expensive

technique of writing the event to a local file, as a reference point.

Statistical summary (STAT): One traditional option for profiling is a statistical summary of the

messages tabulated by source code locations of the send and receive operations. For our statistical

SUBMITTED TO SIGMETRICS 2002

 - 11 -

summary, PHOTON captures a maximum, a minimum, a count, and a cumulative total of the message

latency. With a reasonably long application execution, this statistical information would supply a

convincingly accurate picture of communication activity. It also has a very small analysis overhead that

includes locating an entry in a data structure and updating several fields in that entry. This summary when

combined with the message size and topology information can identify performance anomalies of

individual message operations.

Frequency distributions (FREQ): Another valuable technique for analyzing large masses of raw data

is a frequency distribution. Using a frequency distribution, an analyst can project any number of raw data

samples into classes, which are easy to represent, understand, and store. These distributions provide more

information that the statistical summary presented above; however, the overhead for updating the entry

and the memory requirements are slightly increased. As before, we categorize the data by sender,

receiver, callsite location for both, and message size. Our implementation creates an array of buckets for

message latency delimited by a common log scale. Each bucket counter is incremented when a message’s

latency falls within that bucket’s bounds.

Write to File (WRITE): Although our main focus for PHOTON is runtime analysis of performance

data, we can simply use the analysis step write the values to a memory buffer or a file. In contrast to

traditional tracing, however, this file would not represent a complete chronology of the application’s

communication behavior, but only a small, sampled portion of the overall communication.

4 Evaluation
Our evaluation focuses on our hypothesis that PHOTON can offer a feasible alternative to trace-based

analysis of message passing applications on terascale platforms. In this regard, we evaluate PHOTON

along several dimensions: overhead and perturbation, sampling and analysis methods, and improvements

in data management. Then, we apply PHOTON to several applications in a realistic situation.

4.1 Platform
We ran our tests on an IBM SP system. This machine is composed of sixteen 222 MHz IBM Power3

8-way SMP nodes, totaling 128 CPUs. Each processor has three integer units, two floating-point units,

and two load/store units. Its 64 KB L1 cache is 128-way associative with 32 byte cache lines and L1 uses

SUBMITTED TO SIGMETRICS 2002

 - 12 -

a round-robin replacement scheme. The L2 cache is 8 MB in size, which is four-way set associative with

its own private cache bus. At the time of our tests, the batch partition had 15 nodes and the operating

system was AIX 4.3.3. Each SMP node contains 4GB main memory for a total of 64 GB system memory.

A Colony switch--a proprietary IBM interconnect--connects the nodes. We compiled the various tests

with the IBM XL compilers. Our test jobs ran on dedicated nodes, although other jobs were concurrently

using the network. We built our prototype of PHOTON with the publicly available version of MPI from

Argonne National Laboratory: MPICH 1.2.2. We configured MPICH to use IBM’s Message Passing

Layer (MPL) as the communication substrate.

Configuration M
o

n
ik

er

P
H

O
TO

N
 M

P
I

R
u

n
ti

m
e

P
H

O
TO

N

p
ro

fi
lin

g

la
ye

r

S
am

pl
in

g
m

et
h

o
d

A
n

al
ys

is

M
et

h
o

d

Description
Original MPI ORIG No No N/A N/A
MPI Modified to include PP
information

NOPROF Yes No N/A N/A MPI Runtime w/ PHOTON
modifications. Lacks PP profiling
layer that includes sampling and
analysis methods.

Sampling enabled at various
random thresholds

P-X Yes Yes Random
X = threshold

None Modified MPI with sampling
infrastructure installed where the
threshold for random sampling is X.
No analysis is performed on the
sampled message.

Sampling enabled at various
counter rates

C-X Yes Yes Counter
X = period

None Modified MPI with sampling
infrastructure installed where the
counter-sampling period is X. No
analysis is performed on the
sampled message.

Sampling enabled at various
timer periods

T-X Yes Yes Timer
X = period

None Modified MPI with sampling
infrastructure installed where the
timer-sampling period is X. No
analysis is performed on the
sampled message.

Sampling w/ various analysis
methods

A-X-B Yes Yes A = sampling
method
X = threshold

B is
print,
stat, or
freq

Modified MPI with sampling
infrastructure installed where the
sampling method is A with threshold
X and the stated analysis B is
performed on each sampled
message.

Table 1: Configuration Overview.

4.2 Overhead

Our proposals hinge on the ability of the MPI runtime system to carry a tiny amount of additional

information with each message. To assess the penalty for this increase in the message header size, we

compare three versions of MPI as described by Table 1: 1) a version of the original MPI (ORIG); 2) a

version of the modified MPI the minimal internal changes to the internals, but without the PHOTON

profiling layer installed (NOPROF); and, 3) a version with both the modified MPI and the PHOTON

SUBMITTED TO SIGMETRICS 2002

 - 13 -

profiling layer configured to sample no messages (P-0-OFF). For these experiments, we did not perform

analysis on the resulting sampled message; we consider them in the next section. These experiments

measure message latency for each configuration using the Pallas PMB-MPI1 PingPong benchmark between

two SMP nodes across the network.

Message Payload Size (Bytes)

1e+0 1e+1 1e+2 1e+3 1e+4 1e+5

La
te

nc
y

(m
ic

ro
se

co
nd

s)

100

1000

ORIG
NOPROF
P-0-off

 Message Payload Size (Bytes)

1e+0 1e+1 1e+2 1e+3 1e+4 1e+5

La
te

nc
y

(m
ic

ro
se

co
nd

s)

100

1000

NOPROF
C-2-FREQ
C-4-FREQ
C-16-FREQ
C-64-FREQ
C-256-FREQ

Figure 4: PHOTON Overhead. Figure 5: PHOTON Overhead for Counter Sampling.

As Figure 4 illustrates, the modified version of MPI (NOPROF) performs identically to the original

version (ORIG). The increase in latency was less than one microsecond for all message sizes. When we

included the PHOTON profiling library with sampling disabled (P-0-OFF), the overhead increased by 3

microseconds at a payload size of 4 bytes, though it is only noticeable for smaller messages that have

fewer than 10,000 bytes. As the message size increases, however, this fixed cost overhead disappears into

the greater cost of the communication operation, as expected. Although we do expect the overhead for

PHOTON to be very small for most MPI implementations, the impact of these changes will proportionally

higher on optimized messaging layers, such as those that use shared memory for intra-node transfers on

an SMP. Our experiments showed no measurable change in the communication bandwidth across these

configurations.

This result is pivotal because it argues that these new features could be included in many MPI

implementations without mandatory performance degradation. The optional profiling library does inflict a

small overhead, but it is only noticeable only for small messages.

SUBMITTED TO SIGMETRICS 2002

 - 14 -

4.3 Sampling Methods
The various sampling methods introduced in Section 3.1 have different performance penalties and

dissimilar results with respect to how they sample the message population of the application. All three

options provide a convenient means to control the number of messages sampled, and we use that feature

to evaluate each method’s overhead and sample space. We delay discussion of sample space until Section

0 where we evaluate it on real applications. As shown in Table 1, we vary the threshold (X) for random

sampling (P-X), the period (X) for counter-based sampling (C-X), and the period (X) for timer-based

sampling (T-X). Each sampled message is analyzed with the frequency distribution technique.

First, for counter sampling, we range the period from 2 to 256. Figure 5 illustrates the overhead’s

explic it variation with the counter period. For a payload of 4 bytes, the latency ranges from 48.7

microseconds for C-2 down to 40.1 microseconds for C-256. For reference, we include the lower bound

latency of 37.2 microseconds at 4 bytes for the NOPROF configuration. For applications that send

messages with payloads of more than 20k bytes, the cost is imperceptible relative to the overall

messaging cost.

Next, Figure 6 shows that the overhead for timer-based sampling is less controllable, but it remains

low. A 4-byte message suffers an increase in latency from 37.2 microseconds for NOPROF to 45.5

microseconds for T-0.001-FREQ, when messages are sampled at a period of 1 millisecond. Increasing the

sampling period to 300 milliseconds lowers the latency to 41.8 microseconds.

Message Payload Size (Bytes)

1e+0 1e+1 1e+2 1e+3 1e+4 1e+5

La
te

nc
y

(m
ic

ro
se

co
nd

s)

100

1000

NOPROF
T-1-FREQ
T-0.3-FREQ
T-0.1-FREQ
T-0.03-FREQ
T-0.01-FREQ
T-0.003-FREQ
T-0.001-FREQ

 Message Payload Size (Bytes)

1e+0 1e+1 1e+2 1e+3 1e+4 1e+5

La
te

nc
y

(m
ic

ro
se

co
nd

s)

100

1000

NOPROF
P-0.01-FREQ
P-0.03-FREQ
P-0.1-FREQ
P-0.25-FREQ
P-0.5-FREQ
P-0.75-FREQ
P-0.9-FREQ

Figure 6: PHOTON Overhead for Timer Sampling. Figure 7: PHOTON Overhead for Random Sampling.

SUBMITTED TO SIGMETRICS 2002

 - 15 -

Last, for random sampling, we range the threshold from 0.01 (1%) up to 0.9 (90%). In Figure 7

illustrates the overhead’s explicit variation with this threshold range. At 1% for a 4-byte message, the

latency increases to 43.3 microseconds from 37.2 microseconds for NOPROF. As the threshold increases

up to 90%, the latency increases to 57.0 microseconds.

This evidence reveals that all three sampling strategies have a demonstrated variance of overhead

with respect to message latency.

4.4 Analysis Methods

Runtime analysis methods are valuable

because after the analysis, the raw data can be

discarded, eliminating many of the problems with

traditional techniques. However, the analysis

methods must balance multiple conflicting goals

of minimizing computation and storage against

providing enough detailed information for users to

make proper attribution of performance data. For

this reason, we evaluate two lightweight statistical analysis techniques and a traditional technique of

writing the data to a local file. Viewed in this light, it is important to remember that the cost of the

analysis technique can be balanced against the sampling rates evaluated earlier. If a particular analysis

method has relatively high cost, then the sampling rate can be lowered to compensate, minimizing the

overall impact on the application execution.

As Figure 8 illustrates, the overhead of analysis methods varies considerably; however, our ability to

change the sampling rates at runtime provides considerable flexibility in balancing this analysis overhead

with the sampling rate. One important feature of PHOTON is that the performance data can be interpreted

at runtime, and discarded when the analysis is complete. In Figure 8, we see that the most expensive

technique is writing a record to a file (P-0.5-WRITE) at 59.9 microseconds, and as we would expect, that

the lowest overhead occurs when analysis is disabled (P-0.1-OFF). This overhead drops as we decrease

the random sampling threshold to 10% (P-0.1) from 50% (P-0.5) for each analysis technique. Although

Message Payload Size (Bytes)

1 10 100 1000 10000

La
te

nc
y

(m
ic

ro
se

co
nd

s)

100

1000

P-0.1-OFF
P-0.1-WRITE
P-0.1-STAT
P-0.1-FREQ
P-0.5-OFF
P-0.5-WRITE
P-0.5-STAT
P-0.5-FREQ
NOPROF

Figure 8: PHOTON Overhead for Analysis Methods.

SUBMITTED TO SIGMETRICS 2002

 - 16 -

both the statistical summary method and the frequency distribution method yield similar levels of

overhead, they perform much better that the write technique.

4.5 Applications

To verify that our new technique works with real applications, we tested three applications: sPPM

[16], Sweep3d [13] , and SMG2000 [4]. All of these benchmarks have scaled to thousands of tasks. In

these examples, we scaled problem sizes with the number of tasks, keeping the amount of work per task

constant.

sPPM: sPPM [16] solves a 3-D gas dynamics problem on a uniform Cartesian mesh, using a simplified

version of the Piecewise Parabolic Method. The algorithm makes use of a split scheme of X, Y, and Z

Lagrangian and remap steps, which are computed as three separate sweeps through the mesh per timestep.

Message passing provides updates to ghost cells from neighboring domains three times per timestep.

SMG2000: SMG2000 [4] is a parallel semicoarsening multigrid solver for the linear systems arising

from finite difference, finite volume, or finite element discretizations of the diffusion equation

fuuD =+∇⋅∇ σ)(on logically rectangular grids. The code solves both 2-D and 3-D problems with

discretization stencils of up to 9-point in 2-D and up to 27-point in 3-D.

Random Sampling Threshold

0.01 0.1 1

N
um

be
r

of
 M

es
sa

ge
s

S
am

pl
ed

 o
n

T
as

k
0

1e+0

1e+1

1e+2

1e+3

1e+4

1e+5

1e+6

sPPM
Sweep3D
SMG2000

 Random Sampling Threshold

0.0 0.2 0.4 0.6 0.8 1.0 1.2

R
el

at
iv

e
A

pp
lic

at
io

n
S

lo
w

do
w

n

0.00

0.02

0.04

0.06

0.08

0.10

0.12

SMG2000

Figure 9: Number of Messages Sampled on Task 0. Figure 10: Impact of sampling rate on SMG2000
runtime.

Sweep3D: Sweep3D [12, 13] is a solver for the 3-D, time-independent, particle transport equation on

an orthogonal mesh and it uses a multidimensional wavefront algorithm for "discrete ordinates"

deterministic particle transport simulation. Sweep3D benefits from multiple wavefronts in multiple

SUBMITTED TO SIGMETRICS 2002

 - 17 -

dimensions, which are partitioned and pipelined on a distributed memory system. The three dimensional

space is decomposed onto a two-dimensional orthogonal mesh, where each processor is assigned one

columnar domain. Sweep3D exchanges messages between processors as wavefronts propagate diagonally

across this 3-D space in eight directions.

Figure 9 shows the number of messages actually sampled by PHOTON on our three applications,

where a threshold of 1.0 shows the total number of messages sent from task 0. Here we can also see the

differences in the number of messages sent by every application. SMG2000 sends 105,000 messages

whereas sPPM sends only 260. Encouragingly, Figure 9 illustrates that PHOTON can easily change the

number of messages sampled during an application experiment.

Random Sampling Threshold

0.0 0.2 0.4 0.6 0.8 1.0

R
el

at
iv

e
N

um
be

r
of

 D
is

tin
ct

 M
es

sa
ge

s
S

am
pl

ed

0.0

0.2

0.4

0.6

0.8

1.0

SMG2000
sPPM

Figure 11: Sample Space of Message Population

Sweep3D and sPPM send relatively few messages; our experiments confirmed that all sampling rates

less that 50% did not have a noticeable effect on the application runtime. When the sampling threshold

increased above 50%, the execution time of both applications increased consistently but never more than

1%. SMG2000, on the other hand, sends considerable more messages. Figure 10 shows the impact of the

PHOTON sampling threshold on the SMG2000 runtime, normalized to the NOPROF configuration. We

see that initially, even at a 1% sampling threshold, SMG2000 experiences a slowdown of 6.1%. As the

sampling threshold increases to 90%, the slowdown climbs to 11%.

Although SMG2000 does incur perturbation on the application runtime, its impact is much less than

the traditional tracing approach that had a 154% slowdown in execution time. Much more importantly,

SUBMITTED TO SIGMETRICS 2002

 - 18 -

because PHOTON gathers its information with

sampling, it helps to avoid pathological

measurement problems like those mentioned

in Section 1.2.

Figure 12 shows a subset of the

performance data from our experiments on

SMG2000. The message identifier is a

distinct identifier hashed from the tuple of

(source rank, destination rank, source code

location, destination code location, message

size). Latency distribution is a frequency

distribution of the message latency where

bucket bounds are delimited by a common log scale.

4.6 Observations

Our experimental evaluation substantiated many of our claims and it also revealed several issues.

Among the most important observations exposed by our experiments were that we could significantly

control the amount of overhead on an application, statistical message sampling reduces the possibility of

pathological perturbations from instrumentation, our modifications to MPI to enable runtime analysis

were very small and inflicted no major performance penalty, and statistical profiling can be used on large,

long-running applications for performance analysis of communication activity.

Reduced overhead. Our evaluation revealed that we could dramatically control the overhead of

PHOTON and maintain important information like message latency using statistical profiling. Our

experiments on real applications and on benchmarks demonstrated that this technique radically diminishes

the impact of instrumentation on application execution time and message latency. Consequently, these

variable sampling rates can be balanced against the cost of the analysis technique to compensate.

Parsimonious modifications to MPI have negligible performance implications. Changes to the MPI

runtime system were frugal and our evidence indicates that these changes have an almost imperceptible

0

2

4

6

8

1.0e+0
3.2e+0

1.0e+1
3.2e+1

1.0e+2
3.2e+2

1.0e+3
3.2e+3

1.0e+4
3.2e+4

1.0e+5
3.2e+5

1.0e+6
3.2e+6

1.0e+7

0
5

10
15

20
25

30
35

C
ou

nt
Latency D

istri
bution (m

icro
seconds)

Message Identifier

A

B

C

Figure 12: Example Frequency Distribution.

SUBMITTED TO SIGMETRICS 2002

 - 19 -

performance penalty for the implementation of PHOTON as the evidence of Section 4.2 demonstrates.

Control of the sampling and analysis techniques remains in the profiling layer, so that users can simply

interchange them with their applications to do performance analysis. Indeed, we believe this result argues

for PHOTON features in production MPI implementations on terascale systems because it will be

necessary for any performance analysis of communication activity. What is more, with its low overhead

and amortized perturbation, this technique is also appealing to consider using continuously for large-

scale, long-running applications.

Reduced data volume. Another goal of this work was to ease the data management burden impose by

traditional techniques; our experiments on several applications demonstrates that significant, useful

performance information can be processed dynamically. Because we can calculate message latency

immediately during runtime, the analysis can proceed immediately, and then discard the raw performance

data. Our lightweight analysis examples, statistical summary and frequency distribution, showed that

PHOTON can collect important information from long-running, terascale applications with little overhead.

Timer-based sampling. We find that our timer-based sampling method can lead to pathological

situations where only certain messages are sampled. For example, it is common in scientific simulations

to exchange data with neighbors during one phase of a timestep and compute during the other phase. We

find that many of our experiments only sample the first communication operation immediately after the

compute phase, and then miss the remaining send operations that immediately follow it. Our other two

sampling strategies do not suffer from this deficiency because the variance allows the sampling to break

out of patterns. More importantly, our random sampling strategy allows a user to simply specify a

percentage of messages to sample, and PHOTON randomly selects messages without any of these

concerns.

5 Conclusions
As parallel computing systems continue to scale to massive numbers of processors, performance

analysis techniques must allow users to understand their application’s behaviors. We have proposed and

evaluated a novel alternative to trace-based, post-mortem performance analysis of communication activity

in distributed applications. Our alternative for statistical profiling of communication activity included

SUBMITTED TO SIGMETRICS 2002

 - 20 -

minor modifications to the MPI runtime to enable runtime analysis of performance data and an

implementation of message sampling. Our operational prototype, PHOTON, demonstrated several

significant advantages over the traditional trace-based approaches including dramatically lower overhead

and perturbation, even for applications that communicate frequently.

Acknowledgments
This work was performed under the auspices of the U.S. Department of Energy by the University of

California , Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

References
[1] G.S. Almasi, C. Cascaval et al., “Demonstrating the scalability of a molecular dynamics

application on a Petaflop computer,” Proc. Int'l Conf. Supercomputing, 2001, pp. 393-406.
[2] J.M. Anderson, L.M. Berc et al., “Continuous profiling: where have all the cycles gone?,” ACM

Trans. Computer Systems, 15(4):357-90, 1997.
[3] T.E. Anderson and E.D. Lazowska, “Quartz: A Tool for Tuning Parallel Program Performance,”

Proc. 1990 SIGMETRICS Conf. Measurement and Modeling Computer Systems, 1990, pp. 115-
25.

[4] P.N. Brown, R.D. Falgout, and J.E. Jones, “Semicoarsening multigrid on distributed memory
machines,” SIAM Journal on Scientific Computing, 21(5):1823-34, 2000.

[5] K.C. Claffy, G.C. Polyzos, and H.-W. Braun, “Application of sampling methodologies to network
traffic characterization,” Proc. SIGCOMM: Communications architectures, protocols and
applications, 1993, pp. 194-203.

[6] G.A. Geist, M.T. Heath et al., “A Users' Guide to PICL - A Portable Instrumented
Communication Library,” Oak Ridge National Laboratory, P.O.Box 2009, Bldg. 9207-A, Oak
Ridge, TN 37831-8083 1991.

[7] S.L. Graham, P.B. Kessler, and M.K. McKusick, “Gprof: A Call Graph Execution Profiler,”
SIGPLAN Notices (SIGPLAN '82 Symp. Compiler Construction), 17(6):120-6, 1982.

[8] W. Gropp, E. Lusk, and A. Skjellum, Using MPI: portable parallel programming with the
message-passing interface, 2nd ed. Cambridge, MA: MIT Press, 1999.

[9] W.D. Gropp, E. Lusk, and D. Swider, “Improving the Performance of MPI Derived Datatypes,”
Proc. MPI Developers and Users Conference (MPIDC), 1999.

[10] W. Gu, G. Eisenhauer et al., “Falcon: On-line Monitoring and Steering of Parallel Programs,”
Concurrency: Practice and Experience, 10(9):699-736, 1998.

[11] M.T. Heath, A.D. Malony, and D.T. Rover, “Parallel performance visualization: from practice to
theory,” IEEE Parallel & Distributed Technology: Systems & Applications, 3(4):44-60, 1995.

[12] A. Hoisie, O. Lubeck et al., “A General Predictive Performance Model for Wavefront Algorithms
on Clusters of SMPs,” Proc. ICPP 2000, 2000.

[13] K.R. Koch, R.S. Baker, and R.E. Alcouffe, “Solution of the First-Order Form of the 3-D Discrete
Ordinates Equation on a Massively Parallel Processor,” Trans. Amer. Nuc. Soc., 65(198), 1992.

[14] J. Labarta, S. Girona et al., “DiP: A Parallel Program Development Environment,” CEPBA,
Barcelona, Spain 1996.

[15] A.D. Malony and D.A. Reed, “Visualizing Parallel Computer System Performance,” in Parallel
Computer Systems: Performance Instrumentation and Visualization, M.S. Bucher, Ed. New
York: ACM, 1990.

[16] A.A. Mirin, R.H. Cohen et al., “Very High Resolution Simulation of Compressible Turbulence
on the IBM-SP System,” Proc. SC99: High Performance Networking and Computing Conf.
(electronic publication), 1999.

SUBMITTED TO SIGMETRICS 2002

 - 21 -

[17] D.A. Reed, P.C. Roth et al., “Scalable performance analysis: the Pablo performance analysis
environment,” Proc. Scalable Parallel Libraries Conf., 1994, pp. 104-13.

[18] S. Shende, A.D. Malony et al., “Portable profiling and tracing for parallel, scientific applications
using C++,” Proc. SIGMETRICS Symp. Parallel and Distributed Tools (SPDT), 1998, pp. 134-
45.

[19] M. Snir, S. Otto et al., Eds., MPI--the complete reference, 2nd ed. Cambridge, MA: MIT Press,
1998.

[20] J. Stasko, J. Domingue et al., Eds., Software Visualization: Programming as a Multimedia
Experience,. Cambridge, MA: MIT Press, 1998.

[21] C.E. Wu, A. Bolmarcich et al., “From Trace Generation to Visualization: A Performance
Framework for Distributed Parallel Systems,” Proc. SC2000: High Performance Networking and
Computing, 2000.

